跳至主要内容

What Makes U-Shaped Stainless Steel Tubes the Key to Ice Storage Efficiency

 Ice storage technology is a key energy-saving solution for modern buildings. By making ice during off-peak night hours (using lower electricity rates) and melting it for cooling during peak daytime, it significantly reduces air-conditioning operating costs. A critical component in this system? The U-shaped stainless steel heat exchanger tubes inside the storage tank—their design directly impacts efficiency, stability, and lifespan. Let’s break down this essential technology.


ice storage system chiller with thermal storage U-shaped heat exchanger tube


How Ice Storage Units Work & the Tank’s Role

An ice storage system consists of a refrigeration unit, ice storage tank, heat exchanger, and control system. Its core processes:

• Nighttime ice-making:

During low electricity demand, the refrigeration unit cools water or glycol in the tank below freezing, forming ice on the outer surface of heat exchanger tubes to store cold energy.


• Daytime ice-melting for cooling:

When demand peaks, hot return water is pumped into the tank. It exchanges heat with the ice, producing cold water for air conditioning.


The U-shaped stainless steel tubes play dual roles:

• In ice-making: They circulate refrigerants (like glycol) to transfer cold to the surrounding water.
• In ice-melting: They act as channels for cold water circulation, absorbing energy from melting ice.

Advantages of U-Shaped Stainless Steel Tubes

Compared to straight or coiled tubes, U-shaped stainless steel designs offer key benefits:

Efficient Heat Transfer & Uniform Ice Formation
• Larger contact area: The U-bend allows even tube distribution in limited space, boosting ice-making/melting efficiency.
• Reduced dead zones: Proper spacing avoids uneven ice buildup (common with straight tubes), ensuring uniform growth.

Freeze Expansion Resistance & Stress Relief

• Flexible structure: The U-bend absorbs stress from ice expansion via minor deformation, preventing cracks in low temperatures.
• Fewer welds: One-piece molding (one-piece construction) reduces leak risks from straight tube joints.

Corrosion Resistance & Longevity

• Stainless steel (304 or 316L) outperforms carbon steel in resisting chloride corrosion—ideal for long-term contact with water, glycol, and cold.
• Smooth surfaces minimize scale buildup, cutting maintenance needs.

Hstars anti-corrosion Heat Exchanger


Key Specifications & Selection Tips

• Material: 316L stainless steel suits high-chloride water (e.g., coastal areas) for better pitting resistance.
• Wall thickness: 0.8–1.5mm, based on pressure (atmospheric/pressurized systems) and freeze resistance.
• Design: DN15–DN25 diameters with spacing balancing efficiency and ice expansion room; U-bend radius ≥3x pipe diameter (to reduce flow resistance).
• Installation: Factory-assembled modular tube sets for on-site lifting; nylon/stainless steel brackets prevent vibration wear.
Real-World Case & Benefits
A commercial complex with an 800m³ tank (316L U-tubes, DN20, 1.2mm wall) achieved:


• 15% higher storage efficiency, 8-hour daytime cooling.
• Zero corrosion leaks over 10 years.

• Annual electricity savings of ~¥450,000, with a <4-year payback.


Future Trends

• Coatings: Anti-corrosion/nanoscale anti-scale coatings for longer life.
• Smart monitoring: Sensors tracking ice thickness and tube status to optimize storage.
• Lightweight design: Thin-walled high-strength stainless steel (e.g., duplex steel) reduces tank load.


U-shaped stainless steel heat exchanger tubes, with their efficiency, freeze resistance, and durability, are now the top choice for ice storage tanks. As materials and manufacturing advance, they’ll drive wider adoption in green buildings and district cooling—critical for carbon neutrality goals.


评论

此博客中的热门博文

How to design a water chiller system with AHU for pharmaceutical factory workshop | Hstarschiller.com

  Nowadays, it’s become more and more aware of pharmaceutical enterprises to realize the significance of building an efficient and green to environment cooling system in the factory, because it can not only help the owner to save the running cost but also contribute to the society by reducing the emissions, especially for those developed countries . But how to design a simple but energy saving cooling system with clean workshop? Below we are going to give you a real case for your reference to help you understand well, especially for those are quite new to the water chiller system field. Firstly,this project has been done by  H.Stars Group  ,including the system design,equipment manufacturing and installation etc. Below is the detailed project overview to help you understand the owner’s requirement . Project address: one of the pharmaceutical factories located in China Project desire: Requesting a constant temperature with humidity for oral solid preparation workshop Proje...

How is the Refrigeration Industry Leading the Green Development with R404A

  As global environmental concerns continue to rise, the refrigeration industry is undergoing a significant transformation. Water-cooled low-temperature units exported overseas are now increasingly adopting the eco-friendly refrigerant R404A, leading the way in the industry's green development. Here's a deeper look into this trend. Why Is R404A Becoming the Preferred Refrigerant for  Water-Cooled Low-Temperature Units ? R404A is a blend of refrigerants that stands out due to its environmentally friendly properties. It is free from Ozone Depleting Potential (ODP) and has a relatively low Global Warming Potential (GWP), making it an ideal substitute for traditional refrigerants. This balance between high-performance cooling and environmental friendliness has made R404A especially popular in regions with strict environmental regulations, such as Europe and North America. Water-cooled low-temperature units exported to these areas are now commonly equipped with R404A to meet local ...

Where are water-cooled chillers used? What is a chiller used for?

  Water-cooled chiller   is a cooling water device that can provide constant temperature, constant current and constant pressure. A chiller is a machine that achieves refrigeration through vapor compression or absorption cycles. These liquids can flow through heat exchangers to cool the air or equipment. The industrial chiller can always output ice water with a lower temperature than the ambient temperature. It can be used wherever cooling is required, either direct cooling or indirect heat exchange. The main components of a water-cooled chiller are compressor, condenser, evaporator, water pump, and water tank. Chillers have a wide range of applications. The chiller can be used to cool the injection mold, improve the quality of plastic products, cool the vacuum coating, control the temperature of the vacuum coating machine, cool the food industry, fast cooling processing, chemical industry, effectively control the temperature of chemicals, cooling buildings, concrete fast Cool...