跳至主要内容

From DX to Liquid Cooling: The Race to a Greener Data Center

 Data centers rely on diverse cooling methods, categorized into mechanical refrigeration and natural cooling. Mechanical systems include air-cooled direct expansion (DX), air-cooled chilled water, water-cooled chilled water, and centralized cooling water systems. Natural cooling encompasses fresh air, plate heat exchange, rotary heat exchange, evaporative cooling, and liquid cooling.

Data center cooling

Air-cooled DX Systems are traditional, with indoor units (compressor, evaporator) connected to outdoor condensers via refrigerant lines. Their simple design ensures reliability (no single point of failure). With fluoride pump energy saving (activating below 5°C), PUE in Zhejiang drops from ~1.71 to ~1.43.

Water-cooled Chilled Water Systems use centrifugal chillers and cooling towers, ideal for high heat loads. Winter free cooling via heat exchangers boosts efficiency (PUE ~1.43 in Zhejiang) but requires complex maintenance.


mechanical refrigeration natural cooling


Air-cooled Chilled Water Systems skip cooling towers, suiting moderate loads. They use air-cooled chillers and offer winter natural cooling, with a typical PUE of ~1.48 in Northeast China.

Liquid Cooling directly targets high-density servers, using water, mineral oil, or fluorinated fluids. Immersion cooling (e.g., fluorinated fluids) excels in efficiency, avoiding traditional HVAC limitations.


liquid cooling energy efficiency PUE optimization


Natural Cooling Technologies like fresh air (clean areas), plate exchangers (polluted environments), and evaporative cooling (dry climates) cut PUE by leveraging outdoor cold air, extending energy-saving periods.

Hstars liquid cooling energy efficiency PUE optimization

评论

此博客中的热门博文

How to design a water chiller system with AHU for pharmaceutical factory workshop | Hstarschiller.com

  Nowadays, it’s become more and more aware of pharmaceutical enterprises to realize the significance of building an efficient and green to environment cooling system in the factory, because it can not only help the owner to save the running cost but also contribute to the society by reducing the emissions, especially for those developed countries . But how to design a simple but energy saving cooling system with clean workshop? Below we are going to give you a real case for your reference to help you understand well, especially for those are quite new to the water chiller system field. Firstly,this project has been done by  H.Stars Group  ,including the system design,equipment manufacturing and installation etc. Below is the detailed project overview to help you understand the owner’s requirement . Project address: one of the pharmaceutical factories located in China Project desire: Requesting a constant temperature with humidity for oral solid preparation workshop Proje...

Where are water-cooled chillers used? What is a chiller used for?

  Water-cooled chiller   is a cooling water device that can provide constant temperature, constant current and constant pressure. A chiller is a machine that achieves refrigeration through vapor compression or absorption cycles. These liquids can flow through heat exchangers to cool the air or equipment. The industrial chiller can always output ice water with a lower temperature than the ambient temperature. It can be used wherever cooling is required, either direct cooling or indirect heat exchange. The main components of a water-cooled chiller are compressor, condenser, evaporator, water pump, and water tank. Chillers have a wide range of applications. The chiller can be used to cool the injection mold, improve the quality of plastic products, cool the vacuum coating, control the temperature of the vacuum coating machine, cool the food industry, fast cooling processing, chemical industry, effectively control the temperature of chemicals, cooling buildings, concrete fast Cool...

Hotels Go Green: Heat Recovery Chillers Cut Costs and Carbon Footprints

  In the operation of hotels, energy costs are a significant factor that cannot be overlooked. The advent of   heat recovery chillers   offers an efficient and energy-saving solution for hotels. ​ A heat recovery chiller, in simple terms, not only performs cooling tasks but also effectively recovers heat. For hotels, this is a highly practical feature. Traditional chillers only accomplish cooling, wasting the heat generated. However, heat recovery chillers are different; they can convert the otherwise wasted heat into usable hot water. In principle, during the cooling cycle of a chiller, the refrigerant releases heat. Heat recovery chillers use special devices to collect this heat, and through a series of heat exchange processes, they can produce hot water. This hot water can be used in various scenarios within the hotel. For example, it can supply water for guest rooms' washing and brushing, provide hot water for the hotel's restaurant kitchen, and even be used for heati...