跳至主要内容

Avoid Downtime, Cut Costs: Smart Maintenance for Smarter Chillers

 Screw water-cooled chillers typically operate around 3,000 hours per year, depending on China's climate and geographical conditions. Regular and scientific maintenance is crucial to ensure long-term, reliable operation, extend the lifespan, and reduce operating costs.

Hstars Screw refrigeration unit

Maintenance and Upkeep
Preventive maintenance during operation and inspection involves creating annual and monthly maintenance plans based on actual operating conditions.

Shutdown Procedures
In winter, clean and dry the unit. Open the drain valve to empty the shell-and-tube heat exchanger to avoid freezing. The shutdown sequence is: chiller off - cooling tower fan off - cooling water pump off - chilled water pump off. Special attention to anti-freezing:

1. Drain the evaporator and condenser if the unit is outdoors below 0°C during standby.
2. Interlock the water flow switch with the unit to prevent freezing when the chilled water flow switch malfunctions.
3. Ensure water in the evaporator is flowing or completely drained when charging or discharging refrigerant.


Concentration %

Freezing temperature ()

Concentration %

Freezing temperature ()

Concentration %

Freezing temperature ()

4.6

-2

19.8

-10

35

-21

8.4

-4

23.6

-13

38.8

-26

12.2

-5

27.4

-15

42.6

-29

16

-7

31.2

-17

46.4

-33


The concentration of ethylene glycol is a mass concentration.

Maintenance fault handling Smarter Chillers

Startup Procedures
After a long shutdown, prepare by thoroughly checking and cleaning the Screw refrigeration unit, cleaning the water pipeline system, inspecting the pump, tightening wiring connections, and preheating the compressor. The startup sequence is: cooling tower fan on - cooling water pump on - chilled water pump on - chiller on.


Refrigerant compressor water system Chiller


Common Fault Analysis and Troubleshooting

Fault

Possible Causes

Detection and Troubleshooting Methods

Excessive discharge pressure

Air or non-condensable gases in the system

Bleed gases via the refrigerant port and re-evacuate if needed

Cooling tower fan malfunction

Inspect and repair the fan to restore operation

Excessive suction pressure

See "Excessive suction pressure"

High ambient temperature

Insufficient cooling water flow

Check the cooling water system and increase the water flow.

Low compressor oil level

Check the oil level through the sight glass and add refrigeration oil

Low discharge pressure

Low suction pressure

See "Low suction pressure"

Refrigerant leakage or insufficient charge

Detect leaks and recharge refrigerant

Cooling water temperature too low

Check if the cooling tower capacity is excessively large or if the ambient temperature is too low

Excessive suction pressure

Discharge pressure too high

See "Discharge pressure too high"

Excessive refrigerant charge

Release part of the refrigerant

Liquid refrigerant flowing from the evaporator into the compressor

Chilled water inlet temperature exceeds maximum allowable value

Check and adjust the expansion valve, ensuring its temperature-sensing bulb is in tight contact with the suction pipe and fully insulated from the outside

Low suction pressure

Clogged filter drier

Replace the filter drier cartridge

Expansion valve improperly adjusted or malfunctioning

Adjust to the appropriate superheat temperature, or check if the expansion valve's temperature-sensing bulb is leaking

Insufficient refrigerant in the system

Detect leaks and recharge refrigerant

Chilled water inlet temperature significantly lower than specified value

Insufficient chilled water flow

Check if the pressure in the evaporator's inlet and outlet pipelines is too low, and adjust the chilled water flow rate

Compressor shutdown due to high-pressure protection

Cooling water temperature too high

Cooling tower fan malfunction

Overhaul the cooling tower fan

Incorrect high-pressure shutdown setting

Check the high-pressure switch

Compressor shutdown due to motor overload

Voltage too high or too low

Check that the voltage does not exceed or fall below the rated voltage by ±10%

Discharge pressure too high

Refer to "Discharge pressure too high"

Cooling water temperature too high

Check if the cooling tower capacity is too small

Overload component malfunction

Check the compressor current and compare it with the rated full-load current specified on the compressor

Motor or terminal short circuit

Check the corresponding resistance of the motor and terminals

Compressor shutdown due to built-in temperature protection switch activation

Voltage too high or too low

Check the voltage; it must not exceed the specified range mentioned above

Discharge pressure too high

See "Discharge pressure too high"

Chilled water inlet temperature too high

Compressor built-in temperature protection switch failure

Replace the component

Insufficient refrigerant in the system

Check for fluorine leakage

The compressor shuts down due to low-pressure protection

Drier filter blockage

Replace the drier filter element

Expansion valve failure

Adjust or replace the expansion valve

Incorrect low-pressure shutdown setting

Check the low-pressure switch

Insufficient refrigerant

Recharge the refrigerant

Loud compressor noise

Insufficient compressor refrigerating oil

Check the oil level in the sight glass and add refrigerating oil

The compressor fails to start

Overcurrent relay trips and fuse burns out

Replace the damaged components

Control circuit not connected

Check the wiring of the control system

No current

Check the power supply

High-pressure protection or low-pressure protection

See the section on suction and discharge pressure faults above

Contactor coil burned out

Replace the damaged component

Incorrect power phase sequence connection

Reconnect and swap any two wires

Water system failure, water flow switch open circuit

Check the water system

The operation display shows an alarm signal

Check the alarm type and take corresponding measures

Incorrect setting of start-stop time

Check and reset the settings

Temperature sensor detects temperature exceeding set value

Check and reset

评论

此博客中的热门博文

How to design a water chiller system with AHU for pharmaceutical factory workshop | Hstarschiller.com

  Nowadays, it’s become more and more aware of pharmaceutical enterprises to realize the significance of building an efficient and green to environment cooling system in the factory, because it can not only help the owner to save the running cost but also contribute to the society by reducing the emissions, especially for those developed countries . But how to design a simple but energy saving cooling system with clean workshop? Below we are going to give you a real case for your reference to help you understand well, especially for those are quite new to the water chiller system field. Firstly,this project has been done by  H.Stars Group  ,including the system design,equipment manufacturing and installation etc. Below is the detailed project overview to help you understand the owner’s requirement . Project address: one of the pharmaceutical factories located in China Project desire: Requesting a constant temperature with humidity for oral solid preparation workshop Proje...

Where are water-cooled chillers used? What is a chiller used for?

  Water-cooled chiller   is a cooling water device that can provide constant temperature, constant current and constant pressure. A chiller is a machine that achieves refrigeration through vapor compression or absorption cycles. These liquids can flow through heat exchangers to cool the air or equipment. The industrial chiller can always output ice water with a lower temperature than the ambient temperature. It can be used wherever cooling is required, either direct cooling or indirect heat exchange. The main components of a water-cooled chiller are compressor, condenser, evaporator, water pump, and water tank. Chillers have a wide range of applications. The chiller can be used to cool the injection mold, improve the quality of plastic products, cool the vacuum coating, control the temperature of the vacuum coating machine, cool the food industry, fast cooling processing, chemical industry, effectively control the temperature of chemicals, cooling buildings, concrete fast Cool...

How is the Refrigeration Industry Leading the Green Development with R404A

  As global environmental concerns continue to rise, the refrigeration industry is undergoing a significant transformation. Water-cooled low-temperature units exported overseas are now increasingly adopting the eco-friendly refrigerant R404A, leading the way in the industry's green development. Here's a deeper look into this trend. Why Is R404A Becoming the Preferred Refrigerant for  Water-Cooled Low-Temperature Units ? R404A is a blend of refrigerants that stands out due to its environmentally friendly properties. It is free from Ozone Depleting Potential (ODP) and has a relatively low Global Warming Potential (GWP), making it an ideal substitute for traditional refrigerants. This balance between high-performance cooling and environmental friendliness has made R404A especially popular in regions with strict environmental regulations, such as Europe and North America. Water-cooled low-temperature units exported to these areas are now commonly equipped with R404A to meet local ...